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The formation of carbon-carbon bonds in a controlled
manner lies at the core of organic synthesis.1 Generally,
these reactions require the preformation of a carbanionic
or organometallic species followed by the addition of a
carbon electrophile. One notable exception to this axiom
is the Baylis-Hillman reaction, which entails a tertiary
amine-catalyzed coupling of an acrylate and an aldehyde
(eq 1).2

The Baylis-Hillman reaction produces a highly func-
tionalized acrylate that can be used for the subsequent
elaboration of a variety of useful compounds.3 While it
has served as the starting point for the synthesis of
numerous natural and unnatural products,4 it is not
without drawbacks. Prominent among these is the rate
at which the reactions typically occur. Reaction times
of 1 week or more are common, and some reactions have
been reported to take more than 1 month to complete
(Scheme 1).2,5 Furthermore, many aldehydes such as
aromatic aldehydes are reluctant to serve as substrates
at all under the relatively mild conditions.6 It is therefore
not surprising that a number of attempts have been made
to circumvent the sluggish nature of this reaction,
including the use of microwave and high pressure tech-
niques, but these have given mixed results at best.7 As
part of our efforts focused on the development of an
asymmetric Baylis-Hillman reaction,8 we sought to
improve the overall efficiency of this transformation in
a general sense.
One significant drawback to the Baylis-Hillman reac-

tion that we found was the undesired formation of self-

aldol products from the initial aldehyde.9 This problem
manifested itself largely in cases where branched alde-
hydes such as isobutyraldehyde were used. We therefore
sought to find a practical catalyst that would allow for
the Michael addition to the acrylate component without
predisposition to promote the aldol reaction (Scheme 2).
Toward this end, tributylphosphine was the ideal cata-
lyst.10 While a number of trialkylphosphines and tertiary
amines were explored, tributylphosphine was consis-
tently found to be the most effective.11
As useful as the discovery of the phosphine catalyst

has proven, it pales by comparison with the astonishing
results observed by variation of the reaction temperature.
Not surprisingly, the rate of formation of product is
increased upon warming the reaction mixture above room
temperature (Scheme 3). This is not a profitable process,
however, as the yield eventually obtained is not greater
than that derived at room temperature.12 Surprisingly,
however, we found that the reaction proceeded smoothly
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and very rapidly upon cooling to 0 °C. While the reaction
between methyl acrylate and acetaldehyde at room
temperature takes 1 week to reach completion, it is done
in 8 h at 0 °C.13 This apparent low-temperature ac-
celeration can be extended to virtually any aldehyde, and
even aromatic aldehydes undergo rapid conversion to the
corresponding Baylis-Hillman adducts in short order. In
addition, it works equally well with amine or phosphine
catalysts.14
The pronounced acceleration of this reaction under the

conditions described here elevates the Baylis-Hillman
reaction into the realm of practically useful transforma-
tions. Work toward the use of these conditions in the
synthesis of natural products is underway in our labo-
ratories.15

Experimental Section16

General Procedure for the Baylis-Hillman Reaction.
A solution of the aldehyde (120 mmol) and methyl acrylate (100
mmol) in dioxane (50 mL) was cooled to 0 °C in an ice bath, and

DABCO (1 g, 0.09 mmol) was added. The reaction was kept cold
until complete by thin-layer chromatography. While cold, 0.1
N HCl (100 mL) was added, and the layers were quickly
separated. The aqueous phase was further extracted with ether,
and the combined extracts were dried over sodium sulfate and
concentrated. The crude product was then purified by distilla-
tion or column chromatography to give the desired products.
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